diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index bef4c6e..e69de29 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -1,27 +0,0 @@ -{ - "commitMessage": "vault backup: {{date}}", - "autoCommitMessage": "vault backup: {{date}}", - "commitDateFormat": "YYYY-MM-DD HH:mm:ss", - "autoSaveInterval": 5, - "autoPushInterval": 0, - "autoPullInterval": 5, - "autoPullOnBoot": true, - "disablePush": false, - "pullBeforePush": true, - "disablePopups": false, - "listChangedFilesInMessageBody": false, - "showStatusBar": true, - "updateSubmodules": false, - "syncMethod": "merge", - "customMessageOnAutoBackup": false, - "autoBackupAfterFileChange": false, - "treeStructure": false, - "refreshSourceControl": true, - "basePath": "", - "differentIntervalCommitAndPush": false, - "changedFilesInStatusBar": false, - "showedMobileNotice": true, - "refreshSourceControlTimer": 7000, - "showBranchStatusBar": true, - "setLastSaveToLastCommit": false -} \ No newline at end of file diff --git a/education/math/MATH1210 (calc 1)/Limits.md b/education/math/MATH1210 (calc 1)/Limits.md index c5dd15c..8a271ce 100644 --- a/education/math/MATH1210 (calc 1)/Limits.md +++ b/education/math/MATH1210 (calc 1)/Limits.md @@ -9,13 +9,19 @@ Every mathematical function can be thought of as a set of ordered pairs, or an i - $f(2.1) = 9.61$ - $f(2.01) = 9.061$ - $f(2.0001) = 9.0006$ - We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$. $ \rarrow$" + We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$", or "As $x \to 2$, $f(x) \to 9$." + +Limits are valuable because they can be used to describe a point on a graph, even if that point is not present. +# Standard Notation +The standard notation for a limit is: +$$ \lim_{x \to a} f(x) = L $$ +- As $x$ approaches $a$, the output of $f(x)$ draws closer to $L$. # Definitions | Term | Definition | | --------------------- | ----------------------------------------------------------------------------- | | Well behaved function | A function that is continuous, has a single value, and is defined everywhere. | -| | | +