vault backup: 2025-04-15 10:06:58

This commit is contained in:
arc 2025-04-15 10:06:58 -06:00
parent 1867f4356d
commit bb8461842f

View File

@ -189,4 +189,8 @@ $$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$
6. $L = \int_{-1}^1 \sqrt{\dfrac{1}{1-x^2}}dx$
7. $L = \int_{-1}^1 \dfrac{1}{\sqrt{1-x^2}}dx$
8. $L = \arcsin(x) \Big|_{-1}^1$
9. $\arcsin($
> Set up an integral to find the length of the curve $y = \sin(x)$ from the point $(0, 0)$ to the point $(2\pi, 0)$.
1. $L = \int_0^{2\pi} \sqrt{1 + \cos^2{x}}dx$ : The derivative of $\sin$ is $\cos$
2. Plug into calculator