From bb8461842f609125f8bbd839195bc63162355694 Mon Sep 17 00:00:00 2001 From: arc Date: Tue, 15 Apr 2025 10:06:58 -0600 Subject: [PATCH] vault backup: 2025-04-15 10:06:58 --- education/math/MATH1210 (calc 1)/Integrals.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/education/math/MATH1210 (calc 1)/Integrals.md b/education/math/MATH1210 (calc 1)/Integrals.md index 9a4c61a..d7e98d6 100644 --- a/education/math/MATH1210 (calc 1)/Integrals.md +++ b/education/math/MATH1210 (calc 1)/Integrals.md @@ -189,4 +189,8 @@ $$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$ 6. $L = \int_{-1}^1 \sqrt{\dfrac{1}{1-x^2}}dx$ 7. $L = \int_{-1}^1 \dfrac{1}{\sqrt{1-x^2}}dx$ 8. $L = \arcsin(x) \Big|_{-1}^1$ -9. $\arcsin($ \ No newline at end of file + +> Set up an integral to find the length of the curve $y = \sin(x)$ from the point $(0, 0)$ to the point $(2\pi, 0)$. + +1. $L = \int_0^{2\pi} \sqrt{1 + \cos^2{x}}dx$ : The derivative of $\sin$ is $\cos$ +2. Plug into calculator \ No newline at end of file