vault backup: 2025-02-09 16:35:33

This commit is contained in:
arc 2025-02-09 16:35:33 -07:00
parent 50e775cf43
commit ba5e4a326f

View File

@ -109,12 +109,20 @@ $$ \dfrac{d}{dx}a^x = a^x*(\ln(a)) $$
for all $a > 0$
# Trig Functions
$$ \lim_{x \to 0} \dfrac{\sin x}{x} = 1 $$
$$ \lim_{x \to 0} \dfrac{\cos x - 1}{x} = 0 $$
## Sine
$$ f'(x) = \lim_{h \to 0} \dfrac{\sin(x + h) - sin(x)}{h} $$
Using the sum trig identity, $\sin(x + h)$ can be rewritten as $\sin x \cos h + \cos x \sin h$.
This allows us to simplify, ul
This allows us to simplify, ultimately leading to:
$$ \dfrac{d}{dx} \sin x = \cos x$$
## Cosine
$$ \dfrac{d}{dx} \cos x = -\sin x $$
## Tangent
$$ \dfrac{1}{\cos^2x}$$
# Examples
> Differentiate $f(x) = 4\sqrt[3]{x} - \dfrac{1}{x^6}$