diff --git a/education/math/MATH1210 (calc 1)/Derivatives.md b/education/math/MATH1210 (calc 1)/Derivatives.md index e780f14..946f6fd 100644 --- a/education/math/MATH1210 (calc 1)/Derivatives.md +++ b/education/math/MATH1210 (calc 1)/Derivatives.md @@ -109,12 +109,20 @@ $$ \dfrac{d}{dx}a^x = a^x*(\ln(a)) $$ for all $a > 0$ # Trig Functions - +$$ \lim_{x \to 0} \dfrac{\sin x}{x} = 1 $$ +$$ \lim_{x \to 0} \dfrac{\cos x - 1}{x} = 0 $$ ## Sine $$ f'(x) = \lim_{h \to 0} \dfrac{\sin(x + h) - sin(x)}{h} $$ Using the sum trig identity, $\sin(x + h)$ can be rewritten as $\sin x \cos h + \cos x \sin h$. -This allows us to simplify, ul +This allows us to simplify, ultimately leading to: +$$ \dfrac{d}{dx} \sin x = \cos x$$ +## Cosine +$$ \dfrac{d}{dx} \cos x = -\sin x $$ + +## Tangent +$$ \dfrac{1}{\cos^2x}$$ + # Examples > Differentiate $f(x) = 4\sqrt[3]{x} - \dfrac{1}{x^6}$