vault backup: 2025-02-09 16:35:33
This commit is contained in:
parent
50e775cf43
commit
ba5e4a326f
@ -109,12 +109,20 @@ $$ \dfrac{d}{dx}a^x = a^x*(\ln(a)) $$
|
||||
for all $a > 0$
|
||||
|
||||
# Trig Functions
|
||||
|
||||
$$ \lim_{x \to 0} \dfrac{\sin x}{x} = 1 $$
|
||||
$$ \lim_{x \to 0} \dfrac{\cos x - 1}{x} = 0 $$
|
||||
## Sine
|
||||
$$ f'(x) = \lim_{h \to 0} \dfrac{\sin(x + h) - sin(x)}{h} $$
|
||||
Using the sum trig identity, $\sin(x + h)$ can be rewritten as $\sin x \cos h + \cos x \sin h$.
|
||||
|
||||
This allows us to simplify, ul
|
||||
This allows us to simplify, ultimately leading to:
|
||||
$$ \dfrac{d}{dx} \sin x = \cos x$$
|
||||
## Cosine
|
||||
$$ \dfrac{d}{dx} \cos x = -\sin x $$
|
||||
|
||||
## Tangent
|
||||
$$ \dfrac{1}{\cos^2x}$$
|
||||
|
||||
# Examples
|
||||
|
||||
> Differentiate $f(x) = 4\sqrt[3]{x} - \dfrac{1}{x^6}$
|
||||
|
Loading…
x
Reference in New Issue
Block a user