vault backup: 2025-01-13 13:19:26
This commit is contained in:
parent
dd0a77e726
commit
b51fce6bac
@ -24,7 +24,21 @@
|
||||
| 16. | $x + \overline{x} \cdot y = x + y$ | | $x \cdot (\overline{x} + y) = x \cdot y$ | |
|
||||
| 17. Consensus | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ | | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ | |
|
||||
# Synthesis
|
||||
In the context of binary logic, synthesis refers to the act of creating a boolean expression that evaluates to match a given truth table.
|
||||
|
||||
This is done by creating a product term for each entry in the table that has an output of $1$, that also evaluates to $1$, then ORing each product term together and then simplifying.
|
||||
|
||||
Example:
|
||||
|
||||
Given the below truth table, synthesize a boolean expression that corresponds.
|
||||
|
||||
| $x_1$ | $x_2$ | $f(x_1, x_2)$ |
|
||||
| ----- | ----- | ------------- |
|
||||
| 0 | 0 | 1 |
|
||||
| 0 | 1 | 1 |
|
||||
| 1 | 0 | 0 |
|
||||
| 1 | 1 | 1 |
|
||||
-
|
||||
|
||||
# Logic Gates
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user