vault backup: 2025-01-13 13:19:26

This commit is contained in:
arc 2025-01-13 13:19:26 -07:00
parent dd0a77e726
commit b51fce6bac

View File

@ -24,7 +24,21 @@
| 16. | $x + \overline{x} \cdot y = x + y$ | | $x \cdot (\overline{x} + y) = x \cdot y$ | | | 16. | $x + \overline{x} \cdot y = x + y$ | | $x \cdot (\overline{x} + y) = x \cdot y$ | |
| 17. Consensus | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ | | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ | | | 17. Consensus | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ | | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ | |
# Synthesis # Synthesis
In the context of binary logic, synthesis refers to the act of creating a boolean expression that evaluates to match a given truth table.
This is done by creating a product term for each entry in the table that has an output of $1$, that also evaluates to $1$, then ORing each product term together and then simplifying.
Example:
Given the below truth table, synthesize a boolean expression that corresponds.
| $x_1$ | $x_2$ | $f(x_1, x_2)$ |
| ----- | ----- | ------------- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
-
# Logic Gates # Logic Gates