vault backup: 2024-09-30 11:18:24
This commit is contained in:
parent
8dd761c084
commit
950f46655b
@ -49,7 +49,7 @@ Interpreting the above table:
|
||||
- When $x = \frac{\pi}{4}$, $y = 1$
|
||||
- When $x = \frac{\pi}{2}$, there's an asymptote
|
||||
|
||||
Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$.
|
||||
Without any transformations applied, the period of $tan(x) = \pi$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$.
|
||||
# Cotangent
|
||||
$$ y = cot(x) $$
|
||||
![Graph of cotangent](assets/graphcot.svg)
|
||||
@ -62,3 +62,10 @@ If $cot(x) = \frac{cos(x)}{sin(x)}$, then:
|
||||
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
|
||||
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cot(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
|
||||
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
|
||||
|
||||
Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$.
|
||||
|
||||
# Examples
|
||||
> Given $-2tan(\pi*x + \pi) - 1$
|
||||
- $A = -2, B = \pi, C = -\pi, D = -1$
|
||||
-
|
Loading…
Reference in New Issue
Block a user