diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index ed2bbe2..10b2f2f 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -49,7 +49,7 @@ Interpreting the above table: - When $x = \frac{\pi}{4}$, $y = 1$ - When $x = \frac{\pi}{2}$, there's an asymptote -Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$. +Without any transformations applied, the period of $tan(x) = \pi$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$. # Cotangent $$ y = cot(x) $$ ![Graph of cotangent](assets/graphcot.svg) @@ -62,3 +62,10 @@ If $cot(x) = \frac{cos(x)}{sin(x)}$, then: | ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- | | $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cot(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ | | $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ | + +Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$. + +# Examples +> Given $-2tan(\pi*x + \pi) - 1$ +- $A = -2, B = \pi, C = -\pi, D = -1$ +- \ No newline at end of file