vault backup: 2025-10-06 12:39:06
This commit is contained in:
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@@ -1,27 +0,0 @@
|
||||
{
|
||||
"commitMessage": "vault backup: {{date}}",
|
||||
"autoCommitMessage": "vault backup: {{date}}",
|
||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||
"autoSaveInterval": 5,
|
||||
"autoPushInterval": 0,
|
||||
"autoPullInterval": 5,
|
||||
"autoPullOnBoot": false,
|
||||
"disablePush": false,
|
||||
"pullBeforePush": true,
|
||||
"disablePopups": false,
|
||||
"listChangedFilesInMessageBody": false,
|
||||
"showStatusBar": true,
|
||||
"updateSubmodules": false,
|
||||
"syncMethod": "merge",
|
||||
"customMessageOnAutoBackup": false,
|
||||
"autoBackupAfterFileChange": false,
|
||||
"treeStructure": false,
|
||||
"refreshSourceControl": true,
|
||||
"basePath": "",
|
||||
"differentIntervalCommitAndPush": false,
|
||||
"changedFilesInStatusBar": false,
|
||||
"showedMobileNotice": true,
|
||||
"refreshSourceControlTimer": 7000,
|
||||
"showBranchStatusBar": true,
|
||||
"setLastSaveToLastCommit": false
|
||||
}
|
@@ -111,5 +111,10 @@ Then if the *series converges* absolutely then the sum converges.
|
||||
|
||||
> Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n+5}$ conditionally converge, absolutely converge, or diverge?
|
||||
1. Consider $\sum_{n=1}^\infty|\frac{(-1)^n}{n+5}| = \sum_{n=1}^\infty \frac{1}{n+5}$.
|
||||
2. The above series can be compared to $\frac{1}{n}$ with the limit comparison test.
|
||||
2. The above series can be compared to $\frac{1}{n}$ with the limit comparison test. $\lim_{n \to \infty}\dfrac{\frac{1}{n}}{\frac{1}{n+5}} = 1 \ne 0, \infty$. By the L.C.T, $\frac{1}{n+5}$ diverges, so the series does not absolutely converge.
|
||||
3. Applying the Alternating Series Test,
|
||||
- $a_n > 0$ for all $n$ - all values in the series are greater than zero
|
||||
- $a_n \ge a_{n+1}$ - the series decreases
|
||||
- $\lim_{n \to \infty} a_n = 0$ - the series approaches zero
|
||||
All three conditions hold true, therefore we know that $\sum_{n=1}^\infty \frac{(-1)^n}{n+5}$ conditionally converges.
|
||||
|
||||
|
Reference in New Issue
Block a user