vault backup: 2025-10-06 12:39:06

This commit is contained in:
arc
2025-10-06 12:39:06 -06:00
parent edb083d2a8
commit 9153235225
2 changed files with 6 additions and 28 deletions

View File

@@ -1,27 +0,0 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": false,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@@ -111,5 +111,10 @@ Then if the *series converges* absolutely then the sum converges.
> Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n+5}$ conditionally converge, absolutely converge, or diverge? > Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n+5}$ conditionally converge, absolutely converge, or diverge?
1. Consider $\sum_{n=1}^\infty|\frac{(-1)^n}{n+5}| = \sum_{n=1}^\infty \frac{1}{n+5}$. 1. Consider $\sum_{n=1}^\infty|\frac{(-1)^n}{n+5}| = \sum_{n=1}^\infty \frac{1}{n+5}$.
2. The above series can be compared to $\frac{1}{n}$ with the limit comparison test. 2. The above series can be compared to $\frac{1}{n}$ with the limit comparison test. $\lim_{n \to \infty}\dfrac{\frac{1}{n}}{\frac{1}{n+5}} = 1 \ne 0, \infty$. By the L.C.T, $\frac{1}{n+5}$ diverges, so the series does not absolutely converge.
3. Applying the Alternating Series Test,
- $a_n > 0$ for all $n$ - all values in the series are greater than zero
- $a_n \ge a_{n+1}$ - the series decreases
- $\lim_{n \to \infty} a_n = 0$ - the series approaches zero
All three conditions hold true, therefore we know that $\sum_{n=1}^\infty \frac{(-1)^n}{n+5}$ conditionally converges.