vault backup: 2025-04-15 09:41:58
This commit is contained in:
parent
79a4ccc0a8
commit
8810f2f9cf
@ -168,4 +168,10 @@ $$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$
|
||||
4. $= \dfrac{x^4 - 1}{2x^2}$: Factor out $18$ again
|
||||
5. $L = \int_{1/2}^5 \sqrt{1 + (\dfrac{4x-1}{2x^2})^2}dx$ : Use the length formula
|
||||
6. $= \int_{1/2}^5 \sqrt{1 + \dfrac{x^8 - 2x^4 + 1}{x^4}} dx$: Apply the $^2$
|
||||
7. $= \int_{1/2}^5 \sqrt{\dfrac{4x^4 + x^8 -2x^4 + 1}{4x^4}}$: Set $1 = \dfrac{4x^4}{4x^4}$ and add
|
||||
7. $= \int_{1/2}^5 \sqrt{\dfrac{4x^4 + x^8 -2x^4 + 1}{4x^4}}dx$: Set $1 = \dfrac{4x^4}{4x^4}$ and add
|
||||
8. $= \int_{1/2}^5 \sqrt{\dfrac{x^8 + 2x^4}{4x^4}}dx$
|
||||
9. $\int_{1/2}^5 \sqrt{\dfrac{(4x+1)^2}{4x^4}}$
|
||||
10. = $\int_{1/2}^5 \dfrac{x^4 + 1}{2x^2}dx$
|
||||
11. $= \frac{1}{2}\int_{1/2}^5 \dfrac{x^4 + 1}{x^2}$
|
||||
12. $= \dfrac{1}{2} \int_{1/2}^5 (x^4 + 1)(x^{-2})dx$
|
||||
13. $= \frac 1 2 \int_{1/2}^5 (x^2 - x^$
|
Loading…
x
Reference in New Issue
Block a user