diff --git a/education/math/MATH1210 (calc 1)/Integrals.md b/education/math/MATH1210 (calc 1)/Integrals.md index 40e50d2..255b0e4 100644 --- a/education/math/MATH1210 (calc 1)/Integrals.md +++ b/education/math/MATH1210 (calc 1)/Integrals.md @@ -168,4 +168,10 @@ $$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$ 4. $= \dfrac{x^4 - 1}{2x^2}$: Factor out $18$ again 5. $L = \int_{1/2}^5 \sqrt{1 + (\dfrac{4x-1}{2x^2})^2}dx$ : Use the length formula 6. $= \int_{1/2}^5 \sqrt{1 + \dfrac{x^8 - 2x^4 + 1}{x^4}} dx$: Apply the $^2$ -7. $= \int_{1/2}^5 \sqrt{\dfrac{4x^4 + x^8 -2x^4 + 1}{4x^4}}$: Set $1 = \dfrac{4x^4}{4x^4}$ and add \ No newline at end of file +7. $= \int_{1/2}^5 \sqrt{\dfrac{4x^4 + x^8 -2x^4 + 1}{4x^4}}dx$: Set $1 = \dfrac{4x^4}{4x^4}$ and add +8. $= \int_{1/2}^5 \sqrt{\dfrac{x^8 + 2x^4}{4x^4}}dx$ +9. $\int_{1/2}^5 \sqrt{\dfrac{(4x+1)^2}{4x^4}}$ +10. = $\int_{1/2}^5 \dfrac{x^4 + 1}{2x^2}dx$ +11. $= \frac{1}{2}\int_{1/2}^5 \dfrac{x^4 + 1}{x^2}$ +12. $= \dfrac{1}{2} \int_{1/2}^5 (x^4 + 1)(x^{-2})dx$ +13. $= \frac 1 2 \int_{1/2}^5 (x^2 - x^$ \ No newline at end of file