vault backup: 2025-09-03 13:52:38

This commit is contained in:
arc
2025-09-03 13:52:38 -06:00
parent e0a4ea7fdb
commit 7dc4c3e1bc

View File

@ -25,7 +25,20 @@ To find the instantaneous acceleration, we can apply the formula:
$$a_{\text{instant}} = a = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$
## Equations of Motion for Constant Acceleration
1. $v = v_0 + at$
2. $x = x_0 + \frac{1}{2}(v_0 + v)t$
3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$
4. $v^2 = v_0^2 + 2a(x - x_0)$
1. $v = v_0 + at$ - Use when missing $x$
2. $x = x_0 + \frac{1}{2}(v_0 + v)t$ - Use when missing $a$
3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$ - Use when missing $v$
4. $v^2 = v_0^2 + 2a(x - x_0)$ - Use when missing $t$
Kinematics problems have a *start* and an *end* of the motion.
| Initial | Final |
| -------------- | ----- |
| $t_0$ | $t$ |
| $v_0$ | $v$ |
| $x_0$ | $x$ |
| $a$ (constant) | $a$ |
## Examples
> Sally aggressively drives her Alfa Romeo from rest to 50 m/s in 6s. What is her acceleration?