vault backup: 2025-09-03 13:52:38
This commit is contained in:
@ -25,7 +25,20 @@ To find the instantaneous acceleration, we can apply the formula:
|
||||
|
||||
$$a_{\text{instant}} = a = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$
|
||||
## Equations of Motion for Constant Acceleration
|
||||
1. $v = v_0 + at$
|
||||
2. $x = x_0 + \frac{1}{2}(v_0 + v)t$
|
||||
3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$
|
||||
4. $v^2 = v_0^2 + 2a(x - x_0)$
|
||||
1. $v = v_0 + at$ - Use when missing $x$
|
||||
2. $x = x_0 + \frac{1}{2}(v_0 + v)t$ - Use when missing $a$
|
||||
3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$ - Use when missing $v$
|
||||
4. $v^2 = v_0^2 + 2a(x - x_0)$ - Use when missing $t$
|
||||
|
||||
|
||||
Kinematics problems have a *start* and an *end* of the motion.
|
||||
|
||||
| Initial | Final |
|
||||
| -------------- | ----- |
|
||||
| $t_0$ | $t$ |
|
||||
| $v_0$ | $v$ |
|
||||
| $x_0$ | $x$ |
|
||||
| $a$ (constant) | $a$ |
|
||||
## Examples
|
||||
|
||||
> Sally aggressively drives her Alfa Romeo from rest to 50 m/s in 6s. What is her acceleration?
|
||||
|
Reference in New Issue
Block a user