From 7dc4c3e1bc10cb56b189b8abba7015dabd91b811 Mon Sep 17 00:00:00 2001 From: arc Date: Wed, 3 Sep 2025 13:52:38 -0600 Subject: [PATCH] vault backup: 2025-09-03 13:52:38 --- education/physics/PHYS2210/Unit 1.md | 21 +++++++++++++++++---- 1 file changed, 17 insertions(+), 4 deletions(-) diff --git a/education/physics/PHYS2210/Unit 1.md b/education/physics/PHYS2210/Unit 1.md index c19a618..30ab238 100644 --- a/education/physics/PHYS2210/Unit 1.md +++ b/education/physics/PHYS2210/Unit 1.md @@ -25,7 +25,20 @@ To find the instantaneous acceleration, we can apply the formula: $$a_{\text{instant}} = a = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$ ## Equations of Motion for Constant Acceleration -1. $v = v_0 + at$ -2. $x = x_0 + \frac{1}{2}(v_0 + v)t$ -3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$ -4. $v^2 = v_0^2 + 2a(x - x_0)$ +1. $v = v_0 + at$ - Use when missing $x$ +2. $x = x_0 + \frac{1}{2}(v_0 + v)t$ - Use when missing $a$ +3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$ - Use when missing $v$ +4. $v^2 = v_0^2 + 2a(x - x_0)$ - Use when missing $t$ + + +Kinematics problems have a *start* and an *end* of the motion. + +| Initial | Final | +| -------------- | ----- | +| $t_0$ | $t$ | +| $v_0$ | $v$ | +| $x_0$ | $x$ | +| $a$ (constant) | $a$ | +## Examples + + > Sally aggressively drives her Alfa Romeo from rest to 50 m/s in 6s. What is her acceleration?