vault backup: 2025-03-25 09:46:37

This commit is contained in:
arc
2025-03-25 09:46:37 -06:00
parent 647d705823
commit 7aed5aa03d
2 changed files with 34 additions and 2 deletions

View File

@ -56,8 +56,13 @@ $f(x_i)$ is the *height* of each sub-interval, and $\Delta x$ is the change in t
## Examples
> Find the exact value of the integral $\int_0^1 5x \space dx$
Relevant formula:
Relevant formulas:
$$ \sum_{i = 1}^n = \dfrac{(n)(n + 1)}{2} $$
$ \Delta x = \dfrac{1 - 0$
1. $\int_0^1 5x \space dx = \lim_{n \to \infty} \sum_{i=1}^n 5(x_i) * \Delta x$
2. $= \lim_{n \to \infty} \sum_{i=1}^n 5(\frac{1}{n} \cdot i) \cdot \frac{1}{n}$
3. $
3. $= \lim_{n \to \infty} \sum_{i = 1}^n \dfrac{5}{n^2}\cdot i$
4. $= \lim_{n \to \infty} \dfrac{5}{n^2} \sum_{i = 1}^n i$
5. $= \lim_{x \to \infty} \dfrac{5}{n^2} \cdot \dfrac{n(n + 1)}{2}$
6. $= \lim_{n \to \infty} \dfrac{5n^2 + 5n}{2n^2}$
7. $= \dfrac{5}{2}$