vault backup: 2025-03-25 09:46:37
This commit is contained in:
@ -56,8 +56,13 @@ $f(x_i)$ is the *height* of each sub-interval, and $\Delta x$ is the change in t
|
||||
## Examples
|
||||
> Find the exact value of the integral $\int_0^1 5x \space dx$
|
||||
|
||||
Relevant formula:
|
||||
Relevant formulas:
|
||||
$$ \sum_{i = 1}^n = \dfrac{(n)(n + 1)}{2} $$
|
||||
$ \Delta x = \dfrac{1 - 0$
|
||||
1. $\int_0^1 5x \space dx = \lim_{n \to \infty} \sum_{i=1}^n 5(x_i) * \Delta x$
|
||||
2. $= \lim_{n \to \infty} \sum_{i=1}^n 5(\frac{1}{n} \cdot i) \cdot \frac{1}{n}$
|
||||
3. $
|
||||
3. $= \lim_{n \to \infty} \sum_{i = 1}^n \dfrac{5}{n^2}\cdot i$
|
||||
4. $= \lim_{n \to \infty} \dfrac{5}{n^2} \sum_{i = 1}^n i$
|
||||
5. $= \lim_{x \to \infty} \dfrac{5}{n^2} \cdot \dfrac{n(n + 1)}{2}$
|
||||
6. $= \lim_{n \to \infty} \dfrac{5n^2 + 5n}{2n^2}$
|
||||
7. $= \dfrac{5}{2}$
|
Reference in New Issue
Block a user