vault backup: 2024-09-30 11:23:24
This commit is contained in:
parent
950f46655b
commit
701bcf87aa
@ -65,7 +65,12 @@ If $cot(x) = \frac{cos(x)}{sin(x)}$, then:
|
|||||||
|
|
||||||
Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$.
|
Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$.
|
||||||
|
|
||||||
|
# Features of Tangent and Cotangent
|
||||||
|
Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$)
|
||||||
|
- The stretching factor is $|A|$
|
||||||
|
- The period is $\frac{\pi}{|B|}$
|
||||||
|
- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|}$
|
||||||
# Examples
|
# Examples
|
||||||
> Given $-2tan(\pi*x + \pi) - 1$
|
> Given $-2tan(\pi*x + \pi) - 1$
|
||||||
- $A = -2, B = \pi, C = -\pi, D = -1$
|
- $A = -2$, $B = \pi$, $C = -\pi$, $D = -1$
|
||||||
-
|
- Stretch
|
Loading…
Reference in New Issue
Block a user