diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index 10b2f2f..4282039 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -65,7 +65,12 @@ If $cot(x) = \frac{cos(x)}{sin(x)}$, then: Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$. +# Features of Tangent and Cotangent +Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$) +- The stretching factor is $|A|$ +- The period is $\frac{\pi}{|B|}$ +- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|}$ # Examples > Given $-2tan(\pi*x + \pi) - 1$ -- $A = -2, B = \pi, C = -\pi, D = -1$ -- \ No newline at end of file +- $A = -2$, $B = \pi$, $C = -\pi$, $D = -1$ +- Stretch \ No newline at end of file