vault backup: 2024-09-30 11:23:24

This commit is contained in:
zleyyij 2024-09-30 11:23:24 -06:00
parent 950f46655b
commit 701bcf87aa

View File

@ -65,7 +65,12 @@ If $cot(x) = \frac{cos(x)}{sin(x)}$, then:
Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$. Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$.
# Features of Tangent and Cotangent
Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$)
- The stretching factor is $|A|$
- The period is $\frac{\pi}{|B|}$
- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|}$
# Examples # Examples
> Given $-2tan(\pi*x + \pi) - 1$ > Given $-2tan(\pi*x + \pi) - 1$
- $A = -2, B = \pi, C = -\pi, D = -1$ - $A = -2$, $B = \pi$, $C = -\pi$, $D = -1$
- - Stretch