vault backup: 2025-03-20 11:12:46
This commit is contained in:
parent
a187b1974a
commit
6fb86a79b2
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -1,27 +0,0 @@
|
|||||||
{
|
|
||||||
"commitMessage": "vault backup: {{date}}",
|
|
||||||
"autoCommitMessage": "vault backup: {{date}}",
|
|
||||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
|
||||||
"autoSaveInterval": 5,
|
|
||||||
"autoPushInterval": 0,
|
|
||||||
"autoPullInterval": 5,
|
|
||||||
"autoPullOnBoot": true,
|
|
||||||
"disablePush": false,
|
|
||||||
"pullBeforePush": true,
|
|
||||||
"disablePopups": false,
|
|
||||||
"listChangedFilesInMessageBody": false,
|
|
||||||
"showStatusBar": true,
|
|
||||||
"updateSubmodules": false,
|
|
||||||
"syncMethod": "merge",
|
|
||||||
"customMessageOnAutoBackup": false,
|
|
||||||
"autoBackupAfterFileChange": false,
|
|
||||||
"treeStructure": false,
|
|
||||||
"refreshSourceControl": true,
|
|
||||||
"basePath": "",
|
|
||||||
"differentIntervalCommitAndPush": false,
|
|
||||||
"changedFilesInStatusBar": false,
|
|
||||||
"showedMobileNotice": true,
|
|
||||||
"refreshSourceControlTimer": 7000,
|
|
||||||
"showBranchStatusBar": true,
|
|
||||||
"setLastSaveToLastCommit": false
|
|
||||||
}
|
|
@ -6,12 +6,15 @@ An antiderivative is useful when you know the rate of change, and you want to fi
|
|||||||
## Examples
|
## Examples
|
||||||
> Find the antiderivative of the function $y = x^2$
|
> Find the antiderivative of the function $y = x^2$
|
||||||
|
|
||||||
1. We know that $f'(x) = 2x$
|
1. We know that $f'(x) = 2x^1$
|
||||||
|
|
||||||
|
|
||||||
## Formulas
|
## Formulas
|
||||||
|
|
||||||
| Differentiation Formula | Integration Formula |
|
| Differentiation Formula | Integration Formula |
|
||||||
| ------------------------------ | ------------------------------------------------------- |
|
| ---------------------------------------- | ------------------------------------------------------- |
|
||||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||||
|
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
|
||||||
|
| $\dfrac{d}{dx} e^x = e^x$ | |
|
||||||
|
| $\dfrac{d]{dx} a^x = \ln$ | |
|
||||||
|
Loading…
x
Reference in New Issue
Block a user