vault backup: 2025-03-20 11:12:46
This commit is contained in:
@ -6,12 +6,15 @@ An antiderivative is useful when you know the rate of change, and you want to fi
|
||||
## Examples
|
||||
> Find the antiderivative of the function $y = x^2$
|
||||
|
||||
1. We know that $f'(x) = 2x$
|
||||
1. We know that $f'(x) = 2x^1$
|
||||
|
||||
|
||||
## Formulas
|
||||
|
||||
| Differentiation Formula | Integration Formula |
|
||||
| ------------------------------ | ------------------------------------------------------- |
|
||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||
| Differentiation Formula | Integration Formula |
|
||||
| ---------------------------------------- | ------------------------------------------------------- |
|
||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
|
||||
| $\dfrac{d}{dx} e^x = e^x$ | |
|
||||
| $\dfrac{d]{dx} a^x = \ln$ | |
|
||||
|
Reference in New Issue
Block a user