vault backup: 2024-09-30 11:03:24

This commit is contained in:
zleyyij 2024-09-30 11:03:24 -06:00
parent 4e04256dd7
commit 6be1bb929c

View File

@ -40,10 +40,16 @@ To find relative points to create the above graph, you can use the unit circle:
If $tan(x) = \frac{sin(x)}{cos(x})$, then: If $tan(x) = \frac{sin(x)}{cos(x})$, then:
| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ | | $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
| ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- | | ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ | | $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | | | $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
Interpreting the above table:
- When $x = 0$, $y = 0$
- When $x = \frac{\pi}{4}$, $y = 1$
- When $x = \frac{\pi}{2}$, there's an asymptote
Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $
$$ y = cot(x) $$ $$ y = cot(x) $$
![Graph of cotangent](assets/graphcot.svg) ![Graph of cotangent](assets/graphcot.svg)