From 6be1bb929ce1b9ad0ab8e2812e19f5026a0aebc4 Mon Sep 17 00:00:00 2001 From: zleyyij <75810274+zleyyij@users.noreply.github.com> Date: Mon, 30 Sep 2024 11:03:24 -0600 Subject: [PATCH] vault backup: 2024-09-30 11:03:24 --- education/math/MATH1060 (trig)/Graphing.md | 14 ++++++++++---- 1 file changed, 10 insertions(+), 4 deletions(-) diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index 294ba1b..d323d99 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -40,10 +40,16 @@ To find relative points to create the above graph, you can use the unit circle: If $tan(x) = \frac{sin(x)}{cos(x})$, then: -| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ | -| ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- | -| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ | -| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | | +| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ | +| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- | +| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ | +| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ | +Interpreting the above table: +- When $x = 0$, $y = 0$ +- When $x = \frac{\pi}{4}$, $y = 1$ +- When $x = \frac{\pi}{2}$, there's an asymptote + +Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $ $$ y = cot(x) $$ ![Graph of cotangent](assets/graphcot.svg)