vault backup: 2024-09-30 11:03:24
This commit is contained in:
parent
4e04256dd7
commit
6be1bb929c
@ -41,9 +41,15 @@ To find relative points to create the above graph, you can use the unit circle:
|
|||||||
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
|
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
|
||||||
|
|
||||||
| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
|
| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
|
||||||
| ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- |
|
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
|
||||||
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ |
|
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
|
||||||
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | |
|
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
|
||||||
|
Interpreting the above table:
|
||||||
|
- When $x = 0$, $y = 0$
|
||||||
|
- When $x = \frac{\pi}{4}$, $y = 1$
|
||||||
|
- When $x = \frac{\pi}{2}$, there's an asymptote
|
||||||
|
|
||||||
|
Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $
|
||||||
|
|
||||||
$$ y = cot(x) $$
|
$$ y = cot(x) $$
|
||||||
![Graph of cotangent](assets/graphcot.svg)
|
![Graph of cotangent](assets/graphcot.svg)
|
||||||
|
Loading…
Reference in New Issue
Block a user