vault backup: 2024-09-23 11:46:45
This commit is contained in:
parent
26114a6527
commit
67454454ac
@ -60,4 +60,9 @@ $cos\theta = -\frac{7}{25}$
|
|||||||
3. To find $sin\theta$, we can use the trig identity $sin^2\theta + cos^2\theta = 1$:
|
3. To find $sin\theta$, we can use the trig identity $sin^2\theta + cos^2\theta = 1$:
|
||||||
$$ sin^2\theta + (-\frac{7}{25}) = 1 $$
|
$$ sin^2\theta + (-\frac{7}{25}) = 1 $$
|
||||||
Rearranging, we get:
|
Rearranging, we get:
|
||||||
$$ 1 - (-\frac{7}{25} = sin^2\theta $$
|
$$ 1 - (-\frac{7}{25})^2 = sin^2\theta $$
|
||||||
|
Applying the exponent gives us $\frac{49}{625}$, so we can do this:
|
||||||
|
$$ \frac{625}{625} - \frac{49}{625} = \frac{576}{625} = sin^2\theta $$
|
||||||
|
|
||||||
|
Getting rid of the exponent:
|
||||||
|
$$ \sqrt{\frac{576}{625}} = $$
|
||||||
|
Loading…
Reference in New Issue
Block a user