From 67454454ac7da815bcdaec5028d6e84b4e56efc7 Mon Sep 17 00:00:00 2001 From: zleyyij <75810274+zleyyij@users.noreply.github.com> Date: Mon, 23 Sep 2024 11:46:45 -0600 Subject: [PATCH] vault backup: 2024-09-23 11:46:45 --- education/math/MATH1060 (trig)/Identities.md | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/education/math/MATH1060 (trig)/Identities.md b/education/math/MATH1060 (trig)/Identities.md index 60c710b..3ed3245 100644 --- a/education/math/MATH1060 (trig)/Identities.md +++ b/education/math/MATH1060 (trig)/Identities.md @@ -60,4 +60,9 @@ $cos\theta = -\frac{7}{25}$ 3. To find $sin\theta$, we can use the trig identity $sin^2\theta + cos^2\theta = 1$: $$ sin^2\theta + (-\frac{7}{25}) = 1 $$ Rearranging, we get: -$$ 1 - (-\frac{7}{25} = sin^2\theta $$ +$$ 1 - (-\frac{7}{25})^2 = sin^2\theta $$ +Applying the exponent gives us $\frac{49}{625}$, so we can do this: +$$ \frac{625}{625} - \frac{49}{625} = \frac{576}{625} = sin^2\theta $$ + +Getting rid of the exponent: +$$ \sqrt{\frac{576}{625}} = $$