vault backup: 2025-04-13 19:53:16
This commit is contained in:
parent
a2a0db9752
commit
657edfba3d
@ -107,7 +107,7 @@ This formula can also be stated as $\int_a^b f(x)dx = f(c)(b-a)$
|
||||
This theorem tells us that a continuous function on the closed interval will obtain its average for at least one point in the interval.
|
||||
|
||||
# U-Substitution
|
||||
## Forumulas
|
||||
## Formulas
|
||||
- $\int k {du} = ku + C$
|
||||
- $\int u^n du = \frac{1}{n+1}u^{n+1} + C$
|
||||
- $\int \frac{1}{u} du = \ln(|u|) + C$
|
||||
@ -115,4 +115,5 @@ This theorem tells us that a continuous function on the closed interval will obt
|
||||
- $\int \sin(u) du = -\cos(u) + C$
|
||||
- $\int \cos(u) du = \sin(u) + C$
|
||||
- $\int \dfrac{1}{\sqrt{a^2 - u^2}} du = \arcsin(\frac{u}{a}) +C$
|
||||
- $\int \dfrac{1}{a^2+u^2}du = \dfrac{1}{a} \arctan(\frac{u}{a}) + C$
|
||||
- $\int \dfrac{1}{a^2+u^2}du = \dfrac{1}{a} \arctan(\frac{u}{a}) + C$
|
||||
- $\int \dfrac{1}{u\sqrt{u^2 - a^2}} du = \dfrac{1}{a}arcsec(\dfrac{|u|}{a}) + C$
|
Loading…
x
Reference in New Issue
Block a user