vault backup: 2025-08-27 11:49:05
This commit is contained in:
@ -6,11 +6,14 @@ Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$.
|
|||||||
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
|
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
|
||||||
|
|
||||||
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
|
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
|
||||||
- $\Delta x$ refers to the width of each sub-interval
|
- $\Delta x$ refers to the width of each sub-interval, or $\frac{b-a}{n}$.
|
||||||
- $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$
|
- $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$
|
||||||
|
- Or, the width of each interval times the interval index, plus the starting offset.
|
||||||
|
|
||||||
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
|
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
|
||||||
Then $\int_a^b f(x) dx = F(b) - F(a)$.
|
Then $\int_a^b f(x) dx = F(b) - F(a)$.
|
||||||
|
|
||||||
## Examples
|
## Examples
|
||||||
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
|
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
|
||||||
|
|
||||||
|
$$ \int_{-2}^2 2x + 2dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$
|
@ -7,5 +7,11 @@ $$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
|||||||
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
||||||
2. Through the distributive property of integrals,
|
2. Through the distributive property of integrals,
|
||||||
$$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
$$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||||
3. Therefore:
|
3. An integral cancels out an antiderivative, therefore:
|
||||||
$$f(x)g(x) = \intf'(x)g(x)dx $$
|
$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||||
|
4. Moving terms around:
|
||||||
|
$$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
|
||||||
|
|
||||||
|
Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$.
|
||||||
|
|
||||||
|
# Examples
|
Reference in New Issue
Block a user