diff --git a/education/math/MATH1220 (calc II)/Integral Review.md b/education/math/MATH1220 (calc II)/Integral Review.md index 351e798..8962b58 100644 --- a/education/math/MATH1220 (calc II)/Integral Review.md +++ b/education/math/MATH1220 (calc II)/Integral Review.md @@ -6,11 +6,14 @@ Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$. Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$. Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$ -- $\Delta x$ refers to the width of each sub-interval +- $\Delta x$ refers to the width of each sub-interval, or $\frac{b-a}{n}$. - $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$ + - Or, the width of each interval times the interval index, plus the starting offset. Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$). Then $\int_a^b f(x) dx = F(b) - F(a)$. ## Examples -$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ \ No newline at end of file +$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ + +$$ \int_{-2}^2 2x + 2dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$ \ No newline at end of file diff --git a/education/math/MATH1220 (calc II)/Integration by Parts.md b/education/math/MATH1220 (calc II)/Integration by Parts.md index ae79efb..bf68eea 100644 --- a/education/math/MATH1220 (calc II)/Integration by Parts.md +++ b/education/math/MATH1220 (calc II)/Integration by Parts.md @@ -7,5 +7,11 @@ $$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$ $$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$ 2. Through the distributive property of integrals, $$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$ -3. Therefore: -$$f(x)g(x) = \intf'(x)g(x)dx $$ \ No newline at end of file +3. An integral cancels out an antiderivative, therefore: +$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$ +4. Moving terms around: +$$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$ + +Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$. + +# Examples \ No newline at end of file