vault backup: 2025-08-27 11:49:05
This commit is contained in:
@ -7,5 +7,11 @@ $$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
||||
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
||||
2. Through the distributive property of integrals,
|
||||
$$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||
3. Therefore:
|
||||
$$f(x)g(x) = \intf'(x)g(x)dx $$
|
||||
3. An integral cancels out an antiderivative, therefore:
|
||||
$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||
4. Moving terms around:
|
||||
$$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
|
||||
|
||||
Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$.
|
||||
|
||||
# Examples
|
Reference in New Issue
Block a user