vault backup: 2025-04-01 10:08:23
This commit is contained in:
parent
43420ff85a
commit
5463d89d1c
@ -94,5 +94,7 @@ $$ \dfrac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) * g'(x)* $$
|
||||
$$ \dfrac{d}{dx} \int_2^{7x} \cos(t^2) dt = cos((7x)^2) * 7 = 7\cos(49x^2)$$
|
||||
> Finding the derivative of an integral
|
||||
$$ \dfrac{d}{dx}\int_0^{\ln{x}}\tan(t) = \tan(\ln(x))*\dfrac{1}{x} $$
|
||||
> $x$ and $t$ notation
|
||||
> $x$ and $t$ notation *(note: the bar notation is referred to as "evaluated at")*
|
||||
$$ F(x) = \int_4^x 2t \space dt = t^2 \Big|_4^x = x^2 - 16$$
|
||||
> $x$ in top and bottom
|
||||
$$ \dfrac{d}{dx} \int_{2x}^{3x} \sin(t) dt = \dfrac{d}{dx} -\cos(t)\Big|_{2x}^{3x} = \dfrac{d}{dx} (-\cos(3x) + cos(2x) = 3\sin(3x) - 2\sin(2x) $$
|
||||
|
Loading…
x
Reference in New Issue
Block a user