vault backup: 2025-04-01 10:08:23

This commit is contained in:
arc 2025-04-01 10:08:23 -06:00
parent 43420ff85a
commit 5463d89d1c

View File

@ -94,5 +94,7 @@ $$ \dfrac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) * g'(x)* $$
$$ \dfrac{d}{dx} \int_2^{7x} \cos(t^2) dt = cos((7x)^2) * 7 = 7\cos(49x^2)$$
> Finding the derivative of an integral
$$ \dfrac{d}{dx}\int_0^{\ln{x}}\tan(t) = \tan(\ln(x))*\dfrac{1}{x} $$
> $x$ and $t$ notation
> $x$ and $t$ notation *(note: the bar notation is referred to as "evaluated at")*
$$ F(x) = \int_4^x 2t \space dt = t^2 \Big|_4^x = x^2 - 16$$
> $x$ in top and bottom
$$ \dfrac{d}{dx} \int_{2x}^{3x} \sin(t) dt = \dfrac{d}{dx} -\cos(t)\Big|_{2x}^{3x} = \dfrac{d}{dx} (-\cos(3x) + cos(2x) = 3\sin(3x) - 2\sin(2x) $$