vault backup: 2024-09-30 10:58:24
This commit is contained in:
parent
a79c744389
commit
4e04256dd7
@ -40,9 +40,10 @@ To find relative points to create the above graph, you can use the unit circle:
|
|||||||
|
|
||||||
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
|
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
|
||||||
|
|
||||||
| $sin(0)$ | | |
|
| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
|
||||||
| -------- | --- | --- |
|
| ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- |
|
||||||
| | | |
|
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ |
|
||||||
|
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | |
|
||||||
|
|
||||||
$$ y = cot(x) $$
|
$$ y = cot(x) $$
|
||||||
![Graph of cotangent](assets/graphcot.svg)
|
![Graph of cotangent](assets/graphcot.svg)
|
||||||
|
Loading…
Reference in New Issue
Block a user