diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index ed35f32..294ba1b 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -40,9 +40,10 @@ To find relative points to create the above graph, you can use the unit circle: If $tan(x) = \frac{sin(x)}{cos(x})$, then: -| $sin(0)$ | | | -| -------- | --- | --- | -| | | | +| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ | +| ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- | +| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ | +| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | | $$ y = cot(x) $$ ![Graph of cotangent](assets/graphcot.svg)