vault backup: 2024-09-30 10:58:24

This commit is contained in:
zleyyij 2024-09-30 10:58:24 -06:00
parent a79c744389
commit 4e04256dd7

View File

@ -40,9 +40,10 @@ To find relative points to create the above graph, you can use the unit circle:
If $tan(x) = \frac{sin(x)}{cos(x})$, then: If $tan(x) = \frac{sin(x)}{cos(x})$, then:
| $sin(0)$ | | | | $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
| -------- | --- | --- | | ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- |
| | | | | $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ |
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | |
$$ y = cot(x) $$ $$ y = cot(x) $$
![Graph of cotangent](assets/graphcot.svg) ![Graph of cotangent](assets/graphcot.svg)