vault backup: 2025-03-20 11:36:17

This commit is contained in:
arc 2025-03-20 11:36:17 -06:00
parent 7b9909b585
commit 4976da28c2

View File

@ -22,7 +22,7 @@ An antiderivative is useful when you know the rate of change, and you want to fi
| $\dfrac{d}{dx} \cos x = -\sin x$ | $\int \sin(x)dx = \sin x + C$ |
| $\dfrac{d}{dx} \tan{x} = \sec^2 x$ | $\int \sec^2(x)dx = \tan(x) + C$ |
| $\dfrac{d}{dx} \sec x = \sec x \tan x$ | $\int sec^2(x) dx = \sec(x) + C$ |
| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | $\int \sec(x) \tan(x) = $ |
| $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$ | |
| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | $\int \sec(x) \tan(x) dx = \sec x + C$ |
| $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$ | \int \dfrac{1}{\sqrt{1}} |
| $\dfrac{d}{dx} k f(x) = k f'(x)$ | |
| $\dfrac{d}{dx} f(x) \pm g(x) = f'(x) \pm g'(x)$ | |