vault backup: 2025-03-27 09:41:27

This commit is contained in:
arc 2025-03-27 09:41:27 -06:00
parent 6998ab3013
commit 3ce3b8a446

View File

@ -81,4 +81,8 @@ $$ \Delta x = \dfrac{1 - 0}{n} = \dfrac{1}{n}$$$$ x_i = 0 + \Delta xi + \dfrac{1
# Averages
To find the average value of $f(x)$ on the interval $[a, b]$ is given by the formula:
Average = $\dfrac{1}{b-a} \int_a^b f(x)dx$
Average = $\dfrac{1}{b-a} \int_a^b f(x)dx$
# The Fundamental Theorem of Calculus
Let $f$ be a continuous function on the closed interval $[a, b]$ and let $F$ be any antiderivative of $f$, then:
$$\int_a^b f(x) dx = F(b) - F(a)$$