vault backup: 2024-10-02 11:27:50
This commit is contained in:
parent
d2b99ff284
commit
286e7991a5
@ -104,12 +104,21 @@ $A$, $B$, $C$, and $D$ will have similar meanings to the cosecant function as th
|
||||
- The domain of secant is all $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + \frac{\pi}{|B|}k$, where $k$ is an integer. (Every half period + phase shift is where asymptotes appear)
|
||||
- The domain of cosecant is all $x$, where $x \ne \frac{C}{B} + \frac{\pi}{|B|}k$, where $k$ is an integer.
|
||||
- The range is $(\infty, -|A| +D]\cup [|A| + D], \infty)$
|
||||
- The vertical asymptotes of secant occur at $x = \frac{C}{B} + {}
|
||||
- The vertical asymptotes of secant occur at $x = \frac{C}{B} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{|B|}k$, where $k$ is an integer.
|
||||
- The vertical asymptotes of cosecant occur at $x = \frac{C}{B} + \frac{\pi}{|B|}k$, where $k$ is an integer.
|
||||
- The vertical shift is $D$.
|
||||
# Examples
|
||||
> Given $-2\tan(\pi*x + \pi) - 1$
|
||||
|
||||
$A = -2$, $B = \pi$, $C = -\pi$, $D = -1$
|
||||
|
||||
|
||||
> Identify the vertical stretch/compress factor, period, phase shift, and vertical shift of the function $y = 4\sec(\frac{\pi}{3}x - \frac{\pi}{2}) + 1$
|
||||
|
||||
$A = 4$, $B = \frac{\pi}{3}$, $C = \frac{\pi}{2}$, $D = 4$
|
||||
|
||||
Vertical stretch: $|4| = 4$
|
||||
Period: $\frac{2\pi}{\frac{\pi}}
|
||||
|
||||
| Transformation | Equation |
|
||||
| -------------- | ------------------------- |
|
||||
| Stretch | $\|-2\| = 2$ |
|
||||
|
Loading…
Reference in New Issue
Block a user