vault backup: 2024-09-30 11:08:24
This commit is contained in:
parent
6be1bb929c
commit
1d7b844ce7
@ -33,7 +33,7 @@ How to find the:
|
|||||||
|
|
||||||
|
|
||||||
$$ y = A * \sin(B(x-\frac{C}{B})) $$
|
$$ y = A * \sin(B(x-\frac{C}{B})) $$
|
||||||
# Tangent/Cotangent
|
# Tangent
|
||||||
$$ y = tan(x) $$
|
$$ y = tan(x) $$
|
||||||
![Graph of tangent](assets/graphtan.png)
|
![Graph of tangent](assets/graphtan.png)
|
||||||
To find relative points to create the above graph, you can use the unit circle:
|
To find relative points to create the above graph, you can use the unit circle:
|
||||||
@ -49,7 +49,9 @@ Interpreting the above table:
|
|||||||
- When $x = \frac{\pi}{4}$, $y = 1$
|
- When $x = \frac{\pi}{4}$, $y = 1$
|
||||||
- When $x = \frac{\pi}{2}$, there's an asymptote
|
- When $x = \frac{\pi}{2}$, there's an asymptote
|
||||||
|
|
||||||
Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $
|
Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$.
|
||||||
|
# Cotangent
|
||||||
$$ y = cot(x) $$
|
$$ y = cot(x) $$
|
||||||
![Graph of cotangent](assets/graphcot.svg)
|
![Graph of cotangent](assets/graphcot.svg)
|
||||||
|
|
||||||
|
To find relative points to create the above graph, you can use the unit circle:
|
||||||
|
Loading…
Reference in New Issue
Block a user