From 1d7b844ce72996353bcbb45669fad70824960da4 Mon Sep 17 00:00:00 2001 From: zleyyij <75810274+zleyyij@users.noreply.github.com> Date: Mon, 30 Sep 2024 11:08:24 -0600 Subject: [PATCH] vault backup: 2024-09-30 11:08:24 --- education/math/MATH1060 (trig)/Graphing.md | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index d323d99..f0f31f1 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -33,7 +33,7 @@ How to find the: $$ y = A * \sin(B(x-\frac{C}{B})) $$ -# Tangent/Cotangent +# Tangent $$ y = tan(x) $$ ![Graph of tangent](assets/graphtan.png) To find relative points to create the above graph, you can use the unit circle: @@ -49,7 +49,9 @@ Interpreting the above table: - When $x = \frac{\pi}{4}$, $y = 1$ - When $x = \frac{\pi}{2}$, there's an asymptote -Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $ - +Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$. +# Cotangent $$ y = cot(x) $$ ![Graph of cotangent](assets/graphcot.svg) + +To find relative points to create the above graph, you can use the unit circle: