vault backup: 2024-09-30 11:08:24

This commit is contained in:
zleyyij 2024-09-30 11:08:24 -06:00
parent 6be1bb929c
commit 1d7b844ce7

View File

@ -33,7 +33,7 @@ How to find the:
$$ y = A * \sin(B(x-\frac{C}{B})) $$ $$ y = A * \sin(B(x-\frac{C}{B})) $$
# Tangent/Cotangent # Tangent
$$ y = tan(x) $$ $$ y = tan(x) $$
![Graph of tangent](assets/graphtan.png) ![Graph of tangent](assets/graphtan.png)
To find relative points to create the above graph, you can use the unit circle: To find relative points to create the above graph, you can use the unit circle:
@ -49,7 +49,9 @@ Interpreting the above table:
- When $x = \frac{\pi}{4}$, $y = 1$ - When $x = \frac{\pi}{4}$, $y = 1$
- When $x = \frac{\pi}{2}$, there's an asymptote - When $x = \frac{\pi}{2}$, there's an asymptote
Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $ Without any transformations applied, the period of $tan(x) = 1$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$.
# Cotangent
$$ y = cot(x) $$ $$ y = cot(x) $$
![Graph of cotangent](assets/graphcot.svg) ![Graph of cotangent](assets/graphcot.svg)
To find relative points to create the above graph, you can use the unit circle: