vault backup: 2025-01-30 09:33:44
This commit is contained in:
parent
31440675b8
commit
1bf9047fff
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -0,0 +1,27 @@
|
||||
{
|
||||
"commitMessage": "vault backup: {{date}}",
|
||||
"autoCommitMessage": "vault backup: {{date}}",
|
||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||
"autoSaveInterval": 5,
|
||||
"autoPushInterval": 0,
|
||||
"autoPullInterval": 5,
|
||||
"autoPullOnBoot": true,
|
||||
"disablePush": false,
|
||||
"pullBeforePush": true,
|
||||
"disablePopups": false,
|
||||
"listChangedFilesInMessageBody": false,
|
||||
"showStatusBar": true,
|
||||
"updateSubmodules": false,
|
||||
"syncMethod": "merge",
|
||||
"customMessageOnAutoBackup": false,
|
||||
"autoBackupAfterFileChange": false,
|
||||
"treeStructure": false,
|
||||
"refreshSourceControl": true,
|
||||
"basePath": "",
|
||||
"differentIntervalCommitAndPush": false,
|
||||
"changedFilesInStatusBar": false,
|
||||
"showedMobileNotice": true,
|
||||
"refreshSourceControlTimer": 7000,
|
||||
"showBranchStatusBar": true,
|
||||
"setLastSaveToLastCommit": false
|
||||
}
|
@ -34,9 +34,10 @@ Given the equation $y = f(x)$, the following are all notations used to represent
|
||||
- Where a sharp turn takes place
|
||||
- If the slope of the tangent line is vertical
|
||||
|
||||
# Higher Order Differentials
|
||||
- Take the differential of a differential
|
||||
# Higher Order Derivatives
|
||||
- Take the derivative of a derivative
|
||||
|
||||
# Exponential Derivative Formula
|
||||
Using the definition of a derivative to determine the derivative of $f(x) = x^n$, where $n$ is any natural number.
|
||||
|
||||
$$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$
|
||||
@ -61,4 +62,8 @@ $$ \dfrac{(x + h)^n - x^n}{h} = \lim_{h \to 0} \dfrac{(x^n + nx^{n-1}h + P_{n3}x
|
||||
$x^n$ cancels out, and then $h$ can be factored out of the binomial series.
|
||||
|
||||
This leaves us with:
|
||||
$$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{} $$
|
||||
$$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{n-2}*0 \cdots v * 0 $$
|
||||
|
||||
The zeros leave us with:
|
||||
|
||||
$$ f(x) = n, \space $f'(x) = nx^{n-1} $$
|
||||
|
Loading…
x
Reference in New Issue
Block a user