From 1bf9047fff21fcd00ce0af987ae04bf2dcd8f977 Mon Sep 17 00:00:00 2001 From: arc Date: Thu, 30 Jan 2025 09:33:44 -0700 Subject: [PATCH] vault backup: 2025-01-30 09:33:44 --- .obsidian/plugins/obsidian-git/data.json | 27 +++++++++++++++++++ .../math/MATH1210 (calc 1)/Derivatives.md | 11 +++++--- 2 files changed, 35 insertions(+), 3 deletions(-) diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index e69de29..bef4c6e 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -0,0 +1,27 @@ +{ + "commitMessage": "vault backup: {{date}}", + "autoCommitMessage": "vault backup: {{date}}", + "commitDateFormat": "YYYY-MM-DD HH:mm:ss", + "autoSaveInterval": 5, + "autoPushInterval": 0, + "autoPullInterval": 5, + "autoPullOnBoot": true, + "disablePush": false, + "pullBeforePush": true, + "disablePopups": false, + "listChangedFilesInMessageBody": false, + "showStatusBar": true, + "updateSubmodules": false, + "syncMethod": "merge", + "customMessageOnAutoBackup": false, + "autoBackupAfterFileChange": false, + "treeStructure": false, + "refreshSourceControl": true, + "basePath": "", + "differentIntervalCommitAndPush": false, + "changedFilesInStatusBar": false, + "showedMobileNotice": true, + "refreshSourceControlTimer": 7000, + "showBranchStatusBar": true, + "setLastSaveToLastCommit": false +} \ No newline at end of file diff --git a/education/math/MATH1210 (calc 1)/Derivatives.md b/education/math/MATH1210 (calc 1)/Derivatives.md index 6818cb6..3ac69bf 100644 --- a/education/math/MATH1210 (calc 1)/Derivatives.md +++ b/education/math/MATH1210 (calc 1)/Derivatives.md @@ -34,9 +34,10 @@ Given the equation $y = f(x)$, the following are all notations used to represent - Where a sharp turn takes place - If the slope of the tangent line is vertical -# Higher Order Differentials -- Take the differential of a differential +# Higher Order Derivatives +- Take the derivative of a derivative +# Exponential Derivative Formula Using the definition of a derivative to determine the derivative of $f(x) = x^n$, where $n$ is any natural number. $$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$ @@ -61,4 +62,8 @@ $$ \dfrac{(x + h)^n - x^n}{h} = \lim_{h \to 0} \dfrac{(x^n + nx^{n-1}h + P_{n3}x $x^n$ cancels out, and then $h$ can be factored out of the binomial series. This leaves us with: -$$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{} $$ \ No newline at end of file +$$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{n-2}*0 \cdots v * 0 $$ + +The zeros leave us with: + +$$ f(x) = n, \space $f'(x) = nx^{n-1} $$