vault backup: 2025-01-30 09:33:44
This commit is contained in:
parent
31440675b8
commit
1bf9047fff
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -0,0 +1,27 @@
|
|||||||
|
{
|
||||||
|
"commitMessage": "vault backup: {{date}}",
|
||||||
|
"autoCommitMessage": "vault backup: {{date}}",
|
||||||
|
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||||
|
"autoSaveInterval": 5,
|
||||||
|
"autoPushInterval": 0,
|
||||||
|
"autoPullInterval": 5,
|
||||||
|
"autoPullOnBoot": true,
|
||||||
|
"disablePush": false,
|
||||||
|
"pullBeforePush": true,
|
||||||
|
"disablePopups": false,
|
||||||
|
"listChangedFilesInMessageBody": false,
|
||||||
|
"showStatusBar": true,
|
||||||
|
"updateSubmodules": false,
|
||||||
|
"syncMethod": "merge",
|
||||||
|
"customMessageOnAutoBackup": false,
|
||||||
|
"autoBackupAfterFileChange": false,
|
||||||
|
"treeStructure": false,
|
||||||
|
"refreshSourceControl": true,
|
||||||
|
"basePath": "",
|
||||||
|
"differentIntervalCommitAndPush": false,
|
||||||
|
"changedFilesInStatusBar": false,
|
||||||
|
"showedMobileNotice": true,
|
||||||
|
"refreshSourceControlTimer": 7000,
|
||||||
|
"showBranchStatusBar": true,
|
||||||
|
"setLastSaveToLastCommit": false
|
||||||
|
}
|
@ -34,9 +34,10 @@ Given the equation $y = f(x)$, the following are all notations used to represent
|
|||||||
- Where a sharp turn takes place
|
- Where a sharp turn takes place
|
||||||
- If the slope of the tangent line is vertical
|
- If the slope of the tangent line is vertical
|
||||||
|
|
||||||
# Higher Order Differentials
|
# Higher Order Derivatives
|
||||||
- Take the differential of a differential
|
- Take the derivative of a derivative
|
||||||
|
|
||||||
|
# Exponential Derivative Formula
|
||||||
Using the definition of a derivative to determine the derivative of $f(x) = x^n$, where $n$ is any natural number.
|
Using the definition of a derivative to determine the derivative of $f(x) = x^n$, where $n$ is any natural number.
|
||||||
|
|
||||||
$$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$
|
$$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$
|
||||||
@ -61,4 +62,8 @@ $$ \dfrac{(x + h)^n - x^n}{h} = \lim_{h \to 0} \dfrac{(x^n + nx^{n-1}h + P_{n3}x
|
|||||||
$x^n$ cancels out, and then $h$ can be factored out of the binomial series.
|
$x^n$ cancels out, and then $h$ can be factored out of the binomial series.
|
||||||
|
|
||||||
This leaves us with:
|
This leaves us with:
|
||||||
$$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{} $$
|
$$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{n-2}*0 \cdots v * 0 $$
|
||||||
|
|
||||||
|
The zeros leave us with:
|
||||||
|
|
||||||
|
$$ f(x) = n, \space $f'(x) = nx^{n-1} $$
|
||||||
|
Loading…
x
Reference in New Issue
Block a user