vault backup: 2025-01-30 09:48:44
This commit is contained in:
parent
0830d6e8e1
commit
1544af34a4
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -0,0 +1,27 @@
|
|||||||
|
{
|
||||||
|
"commitMessage": "vault backup: {{date}}",
|
||||||
|
"autoCommitMessage": "vault backup: {{date}}",
|
||||||
|
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||||
|
"autoSaveInterval": 5,
|
||||||
|
"autoPushInterval": 0,
|
||||||
|
"autoPullInterval": 5,
|
||||||
|
"autoPullOnBoot": true,
|
||||||
|
"disablePush": false,
|
||||||
|
"pullBeforePush": true,
|
||||||
|
"disablePopups": false,
|
||||||
|
"listChangedFilesInMessageBody": false,
|
||||||
|
"showStatusBar": true,
|
||||||
|
"updateSubmodules": false,
|
||||||
|
"syncMethod": "merge",
|
||||||
|
"customMessageOnAutoBackup": false,
|
||||||
|
"autoBackupAfterFileChange": false,
|
||||||
|
"treeStructure": false,
|
||||||
|
"refreshSourceControl": true,
|
||||||
|
"basePath": "",
|
||||||
|
"differentIntervalCommitAndPush": false,
|
||||||
|
"changedFilesInStatusBar": false,
|
||||||
|
"showedMobileNotice": true,
|
||||||
|
"refreshSourceControlTimer": 7000,
|
||||||
|
"showBranchStatusBar": true,
|
||||||
|
"setLastSaveToLastCommit": false
|
||||||
|
}
|
@ -70,13 +70,15 @@ $$ f(x) = n, \space f'(x) = nx^{n-1} $$
|
|||||||
# Addition/Subtraction Derivative Rule
|
# Addition/Subtraction Derivative Rule
|
||||||
You can add and subtract derivatives to find what the derivative of the whole derivative would be.
|
You can add and subtract derivatives to find what the derivative of the whole derivative would be.
|
||||||
|
|
||||||
# Factor Derivative Rule
|
# Product Rule
|
||||||
$$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) - f(x)g(x)}{h} $$
|
$$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) - f(x)g(x)}{h} $$
|
||||||
This is done by adding a value equivalent to zero to the numerator ($f(x + h)g(x) - f(x + h)g(x)$):
|
This is done by adding a value equivalent to zero to the numerator ($f(x + h)g(x) - f(x + h)g(x)$):
|
||||||
$$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) + f(x + h)g(x) - f(x+h)g(x) - f(x)g(x)}{h} $$
|
$$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) + f(x + h)g(x) - f(x+h)g(x) - f(x)g(x)}{h} $$
|
||||||
|
|
||||||
From here you can factor out $f(x + h)$ from the first two terms, and a $g(x)$ from the next two terms.
|
From here you can factor out $f(x + h)$ from the first two terms, and a $g(x)$ from the next two terms.
|
||||||
|
|
||||||
Then break into two different fractions
|
Then break into two different fractions:
|
||||||
|
|
||||||
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * * $$
|
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$
|
||||||
|
From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula:
|
||||||
|
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x)*
|
Loading…
x
Reference in New Issue
Block a user