From 1544af34a468078b352c5c26cebe3af083fe85b3 Mon Sep 17 00:00:00 2001 From: arc Date: Thu, 30 Jan 2025 09:48:44 -0700 Subject: [PATCH] vault backup: 2025-01-30 09:48:44 --- .obsidian/plugins/obsidian-git/data.json | 27 +++++++++++++++++++ .../math/MATH1210 (calc 1)/Derivatives.md | 8 +++--- 2 files changed, 32 insertions(+), 3 deletions(-) diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index e69de29..bef4c6e 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -0,0 +1,27 @@ +{ + "commitMessage": "vault backup: {{date}}", + "autoCommitMessage": "vault backup: {{date}}", + "commitDateFormat": "YYYY-MM-DD HH:mm:ss", + "autoSaveInterval": 5, + "autoPushInterval": 0, + "autoPullInterval": 5, + "autoPullOnBoot": true, + "disablePush": false, + "pullBeforePush": true, + "disablePopups": false, + "listChangedFilesInMessageBody": false, + "showStatusBar": true, + "updateSubmodules": false, + "syncMethod": "merge", + "customMessageOnAutoBackup": false, + "autoBackupAfterFileChange": false, + "treeStructure": false, + "refreshSourceControl": true, + "basePath": "", + "differentIntervalCommitAndPush": false, + "changedFilesInStatusBar": false, + "showedMobileNotice": true, + "refreshSourceControlTimer": 7000, + "showBranchStatusBar": true, + "setLastSaveToLastCommit": false +} \ No newline at end of file diff --git a/education/math/MATH1210 (calc 1)/Derivatives.md b/education/math/MATH1210 (calc 1)/Derivatives.md index 2b12ed3..9301784 100644 --- a/education/math/MATH1210 (calc 1)/Derivatives.md +++ b/education/math/MATH1210 (calc 1)/Derivatives.md @@ -70,13 +70,15 @@ $$ f(x) = n, \space f'(x) = nx^{n-1} $$ # Addition/Subtraction Derivative Rule You can add and subtract derivatives to find what the derivative of the whole derivative would be. -# Factor Derivative Rule +# Product Rule $$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) - f(x)g(x)}{h} $$ This is done by adding a value equivalent to zero to the numerator ($f(x + h)g(x) - f(x + h)g(x)$): $$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) + f(x + h)g(x) - f(x+h)g(x) - f(x)g(x)}{h} $$ From here you can factor out $f(x + h)$ from the first two terms, and a $g(x)$ from the next two terms. -Then break into two different fractions +Then break into two different fractions: -$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * * $$ \ No newline at end of file +$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$ +From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula: +$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x)* \ No newline at end of file