vault backup: 2025-03-27 09:31:27

This commit is contained in:
arc 2025-03-27 09:31:27 -06:00
parent 49918dcd5d
commit 1143c122d8

View File

@ -72,8 +72,8 @@ $$ \Delta x = \dfrac{1 - 0}{n} = \dfrac{1}{n}$$$$ x_i = 0 + \Delta xi + \dfrac{1
7. $= \dfrac{5}{2}$
# Properties of Integrals
1. $\int_a^a f(x)dx = 0$
2. $\int_b^a f(x)dx = -\int_a^b f(x) dx$
3. $\int_a^b cf(x) dx = c \int_a^b f(x) dx$
4. $\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x)dx$
5. $\int
1. $\int_a^a f(x)dx = 0$ - An integral with a range of zero will always evaluate to zero.
2. $\int_b^a f(x)dx = -\int_a^b f(x) dx$ - The integral from $a \to b$ is equal to the integral from $-(b\to a)$
3. $\int_a^b cf(x) dx = c \int_a^b f(x) dx$ - A constant from inside of an integral can be moved outside of an integral
4. $\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x)dx$ - Integrals can be distributed
5. $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$ - An integral can be split into two smaller integrals covering the same range, added together.