vault backup: 2024-12-04 11:03:03
This commit is contained in:
		| @@ -38,13 +38,13 @@ $$ \vec{v} = \langle \cos \theta,\ |\vec{v}|\sin\theta \rangle $$ | ||||
| # The Dot Product | ||||
| The dot product of two vectors $\vec{u} = \langle a, b \rangle$ and $\vec{v} = \langle c, d \rangle$ is $\vec{u} * \vec{v} = ac + bd$. | ||||
|  | ||||
| - Given that $\vec{u} = \langle -7, 3 \rangle$, and $\vec{v} = \langle -3, 4 \rangle$, find $\vec{u} * \vec{v}$. | ||||
| - $\vec{u} * \vec{v} = -7 * -4 + 3 * 4$ | ||||
| - Given that $\vec{u} = \langle -7, 3 \rangle$, and $\vec{v} = \langle -3, 4 \rangle$, find $\vec{u} \cdot \vec{v}$. | ||||
| - $\vec{u} \cdot \vec{v} = -7 \cdot -4 + 3 \cdot 4$ | ||||
|  | ||||
| The dot product can be used to find the angle between two vectors. | ||||
|  | ||||
| If $\theta (0\degree < \theta < 180\degree)$, is the angle between two nonzero vectors $\vec{u}$ and $\vec{v}$, then | ||||
| $$ \cos\theta = \dfrac{\vec{u}*\vec{v}}{|\vec{u}||\vec{v}|} $$ | ||||
| $$ \cos\theta = \dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|} $$ | ||||
|  | ||||
| # Work | ||||
| The dot product can be used to compute the work required to move an object a certain distance. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 arc
					arc