vault backup: 2025-09-03 12:49:06
This commit is contained in:
@ -2,4 +2,9 @@ The below integration makes use of the following trig identities:
|
|||||||
1. The Pythagorean identity: $\sin^2(x) + \cos^2(x) = 1$
|
1. The Pythagorean identity: $\sin^2(x) + \cos^2(x) = 1$
|
||||||
2. The derivative of sine: $\frac{d}{dx}sin(x) = cos(x)$
|
2. The derivative of sine: $\frac{d}{dx}sin(x) = cos(x)$
|
||||||
3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$
|
3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$
|
||||||
$$ \cos^2(x) = \frac{}
|
4. Half angle cosine identity: $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
|
||||||
|
5. Half angle sine identity: $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$
|
||||||
|
6. $tan^2(x) + 1 = sec^2(x) \Rightarrow \int \sec^2(x)$
|
||||||
|
7. $\dfrac{d}{dx}(\tan(x)) = \sec^2(x)$
|
||||||
|
8.
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user